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Abstract. Biological systems are characterized by many interwoven processes over multiple scales where interactions between the
various phenomena play a decisive role. These phenomena can be chemical, electrical, and/or mechanical, all embedded into a
whole. This paper discusses the propagation of signals in nerve fibres, which exhibits clear signs of complexity: electrical signals
(action potentials) are coupled to mechanical waves in the internal axoplasmic fluid and in the surrounding biomembrane. Here the
underlying microstructure affects strongly the processes: the existence of ion currents changes the balance of ions within fibres,
the opening of ion channels in the surrounding biomembrane is a crucial process, and the biomembrane itself has a microstructure
composed of lipids. The whole process is governed by interactions, and the analysis of single processes has demonstrated the
importance of nonlinearities. The main challenge is to build up a general model where the coupling of all related phenomena is taken
into account. It is proposed that three processes – the propagation of an action potential and mechanical waves in the biomembrane
and in the axoplasmatic fluid – be united into a general model with additional interaction forces for reflecting coupling. Such a
model results in the emerging of a mutually interacting ensemble of waves. The preliminary numerical simulations cast light onto
the possible validation of this general model reflecting the complexity of signal propagation in nerve fibres. The mathematically
consistent modelling will allow not only the prediction of process characteristics but gives a possibility of understanding the role of
governing factors in the whole complex process.
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1. INTRODUCTION

Complex systems are characterized by interactions of
their components. This is the main reason why a
system behaves differently from the simple sum of the
behaviours of its components. Such a behaviour was
already known by Aristotle. In contemporary studies
there are many examples of processes or phenomena
where interactions bring about a new quality at the
macrolevel. In this context, scaling and hierarchies
constitute a framework while interactions rule the
complex macrobehaviour. The present understanding
of complexity started with ideas of L. van Bertalanffy
and N. Wiener (mid-20th century) and developed in
studies on self-organization, chaos theory, networks,
etc. in the second half of the 20th century (see, for

example Prigogine and Stengers [1], Bak [2], Nicolis
and Nicolis [3], Érdi [4], etc.). From the classical
studies of interacting fields such as in thermoelasticity,
photoelasticity, etc., nowadays much attention is paid
to real-life systems whether in biology or man-made
systems (multi-agent systems, econophysics, just to
name a few examples) where nonlinearity, heterogeneity,
hierarchies, and non-stationarity describe the governing
properties or mechanisms. Again, in many such studies
the focus is on interacting fields or interacting waves [5].
In these studies an important tool is the mathematical
modelling of interactions. Mathematically consistent
modelling will allow not only the prediction of process
characteristics but gives a possibility of understanding
the role of governing factors in the whole complex
process [6, 7].
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In the modelling of wave phenomena it is possible
to grasp even within a single governing equation many
complex effects such as stable solutions formed as a
result of the balance between nonlinear and dispersive
effects, wave trajectories may form a certain pattern
like Korteweg–de Vries (KdV) soliton trajectories or
chaotic solutions may emerge under an external impact.
One of the crucial problems in the modelling of wave
phenomena is the proper modelling of the medium,
which as a rule is not homogeneous but is formed by
many constituents not only on the atomistic scale but
also on the mesoscale like microstructured materials.
The question whether the microstructure should be
determined with the same accuracy as the macrostructure
or some assumptions should be made has to be answered
clearly. One of the possibilities is to model the
microstructure using the concept of internal variables
that model the microstructure as an additional field [8,9].
The modelling of wave phenomena in biological systems
faces actually similar problems of scales, hierarchical
microstructures, interactions of different processes, etc.
while in general, biological phenomena are complex
[10]. The effects of nonlinearity, microstructure,
interactions, and excitability must be taken into account,
and the physical and biological systems bear many
similarities [11].

In this paper, attention is paid to the propagation of
signals in nerve fibres. Despite the excellent results in
electrophysiology starting with Hodgkin and Huxley [12]
and FitzHugh [13], the more recent studies have revealed
more information about the processes in nerve fibres [14]
and have challenged researchers to build more consistent
models that could account for many interacting processes
accompanying the propagation of signals in nerve fibres.
In Section 2, general principles of the mathematical
modelling of complex physical and biological processes
are briefly analysed for explaining the framework of
further analysis. Section 3 is devoted to modelling
the single processes in nerves in order to prepare the
constituents for a more general model. In Section 4, the
united model of signal propagation is described including
the interacting electrical signal (action potential), the
mechanical wave in the surrounding biomembrane, and
the wave in the axoplasmic fluid inside the nerve fibre.
As a result, an ensemble of waves propagates in a fibre
influenced by nonlinearities and interactions. In the final
section, the discussion is presented with the results of a
numerical simulation, open questions, and perspectives
for further studies.

2. COMPLEXITY

Here we very briefly list the main features of complexity
and modelling used later in the analysis of signal
propagation in nerve fibres. The signatures of complexity
in physical systems are described in many monographs,
see for example [3,4]. Starting from simple nonlinear
cases, many important phenomena characterize the

behaviour of complex systems and much can be learned
from them. It is even surprising that very simple
nonlinear systems such as the logistic equation or the
three-body system display rich dynamics that help to
understand more complicated cases. The main effects
for understanding complexity are (i) non-additivity
and nonlinear interactions; (ii) sensitivity to initial
conditions; (iii) there are several typical phenomena
characterizing the behaviour of nonlinear systems like
bifurcations, emergence of patterns or ensembles,
thresholds, coherent states, etc; (iv) deterministic
unpredictability; (v) despite the variety of nonlinear
motions, there are several rules that govern the
processes. For more information one should consult
the Encyclopedia of Nonlinear Science [15]. Also the
following should be stressed. The usual understanding
(common sense) is that nonlinear models are just a
little bit corrected linear models. The world around us,
however, is deeply nonlinear and the linear models, as a
rule, are simplifications.

The analysis of wave motion in physical systems has
revealed many signatures of complexity. Nonlinearity
is an important property of solids and fluids influencing
wave motion, and it may be balanced with other physical
effects such as dispersion and dissipation [16]. As
a result, solitons (coherent structures) or shock waves
may be formed [16,17], ensembles of solitons may
emerge [18,19], interaction of 2D solitons may lead
to amplification [20], patterns of soliton trajectories
demonstrate the character of motion in time [18,19],
interaction with the embedded microstructure reveals the
emergence of wave ensembles – solitary trains [21],
seismic waves may undergo amplification [22,23], etc.
Interaction of waves and fields such as in photoelasticity
or acoustoelasticity shows explicitly how new wave
structures may be formed and how informative they are
(see overview by Engelbrecht [5]).

In biological systems the situation is even more
complicated for several reasons [11,24,25]: (i) there
is a need for energy exchange with the surrounding
environment; (ii) many chemical reactions and transfer
mechanisms that are often characterized on the molecular
level are involved; (iii) different time scales, adaptivity,
and hierarchies should be taken into account; (iv) in
mathematical terms, the biological systems are described
by different types of mathematical equations, which
may cause problems in solving them; (v) nonlinearities,
diffusive effects, activity, excitability, spatiotemporal
coupling, etc. play usually a significant role [26–31].

The mathematically consistent modelling will allow
not only the prediction of process characteristics but
gives a possibility of understanding the role of the
governing factors in the whole complex process and
also causality. But the knowledge in other fields such
as the theory of continua, thermodynamics, chemistry,
computational methods, etc. should be interwoven
into a whole on the basis of biological functions and
physiology [24]. Whatever model is derived, it should
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always be validated by experiments and if necessary,
modified and improved on the basis of validation.

3. SIGNALS IN NERVE FIBRES

3.1. Action potential

The famous Hodgkin–Huxley (HH) model is a basic
description of the electrophysiological signal in nerve
fibres [12]. It is based on the telegraph equation where
the inductance is neglected and the ion currents added.
In the original notations it reads:

∂ 2v
∂x2 =Crs

∂v
∂ t

+ rsIi, (1)

where v is the voltage; C is the capacitance; rs designates
the resistance determined as 1/(πa2σ1), where a is the
radius of an axon and σ1 is the conductivity; and Ii is
the ion current. Standard notations x = distance along the
fibre and t = time are used.

A phenomenological expression for the ion current
is

Ii =gKn4(v− vR − vK)+gNam3h(v− vR − vNa)

+gL(v− vR − vL)+Cm
∂v
∂ t

, (2)

gK = 2πaGK, gNa = 2πaGNa, gL = 2πaGL. (3)

Here GK and G Na are the maximum potassium and
sodium conductances, respectively; GL is a constant
leakage conductance, Cm is the membrane capacitance
per unit area, vR is the resting potential, and vK,
vNa, vL are the corresponding equilibrium potentials.
The phenomenological (hidden in terms of continuum
mechanics) variables n, m, and h govern the ‘turning on’
and ‘turning off’ of the membrane conductances.

The ion current is a nonlinear function of three
phenomenological (hidden) variables that govern the
‘turning on’ and ‘turning off’ of the membrane
conductances. These phenomenological variables are
described by the kinetic equations where the equilibrium
values and relaxation times are described by complicated
expressions based on experiments.

The HH model is a benchmark for action potential
models, but further studies have improved it considerably
by explaining the ion pumps in more details [32–34].

The simplified FitzHugh–Nagumo (FHN) model
takes into account only one phenomenological variable
and can be presented in the following form [13,15]:

∂ z
∂ t

= z(z−a)(1− z)− j+D1
∂ 2z
∂x2 ,

∂ j
∂ t

= ε(− j+bz),
(4)

where z is the scaled voltage, j is the recovery current,
D1 is a coefficient, ε is the time-scale difference, the

activation parameters satisfy conditions 0 < a < 1 and
b > 0, and x and t are dimensionless space and time,
respectively. Equations (4) can also be presented as one
third-order partial differential equation [35].

Following the ideas of evolution equations (see for
example [15,16], it is possible to derive also an evolution
equation for the action potential [36]:

∂ 2z1

∂x∂ξ
+ f (z1)

∂ z1

∂ξ
+g(z1) = 0, (5)

where z1 is the scaled voltage and ξ is a moving frame
ξ = c0t − x. Following the FHN model with one
phenomenological variable, f (z1) is a quadratic function
and g(z1) is a linear function. Note that the moving frame
involves velocity c0 determined from the full telegraph
equation. The final velocity c of a nerve pulse is different
from c0.

In fact, the ionic mechanisms are more complicated
and include several pump, exchange, and background
currents [37]. However, all the models based on
telegraph type (electrical cable) theories do not take into
account any other thermodynamical variables as well
as possible mechanical effects [38]. Nevertheless, the
nonlinear models described above are able to reflect
the main features of measured action potentials: (i) the
existence of a threshold for an input, (ii) the all-or-none
phenomenon of the generated signal, (iii) the existence
of an asymmetric localized pulse-type signal with an
overshoot, (iv) the existence of a refraction length due
to the overshoot, and (v) the possible annihilation of the
counter-propagating signals [35,39]. However, being a
solitary pulse, the action potential represents a wave in
an active medium and is not a soliton [11]. The evolution
equation (5) is a one-wave equation and is not able to
describe the counter-propagating waves.

From the viewpoint of complexity, one has to
stress the existence of a critical threshold, the formation
of a coherent state, a special form of interactions,
and the significant role of nonlinearities governing the
process. In addition, the existence of phenomenological
variables brings these models closer to microstructured
materials where such hidden variables play a role in wave
propagation [8, 9].

3.2. Pressure waves in an axoplasmic fluid

The axoplasm within a nerve fibre is conmposed of 87%
water held together by cytoskeleton [40]. The pressure
waves in the axoplasm accompanying the propagation
of an action potential were recorded by Terakawa [41].
In modelling, such a complicated structure is derived as
a pseudoplastic fluid [42] or as a viscous compressible
fluid [43,44]. This means that a pressure wave can be
described by Navier–Stokes equations and in the first
approximation by the 1D model while the biomembrane
can be treated as an elastic tube. In this sense there is a
similarity between the blood flow in the aorta [45] and
pressure waves in the intersticial fluid.
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The governing equation for 1D (along the x-axis)
pressure waves is a momentum balance [46]. In terms
of longitudinal velocity vx it reads:

ρ
(

∂vx

∂ t
+ vx

∂vx

∂x

)
+

∂ p̄
∂x

−µ
∂ 2vx

∂x2 = F, (6)

where ρ is the density, p̄ is the pressure, µ is the
viscosity, and F is the body force.

In terms of pressure in the 2D setting for waves
in a fluid surrounded by a cylindrical tube (shell) the
governing equations are [47]:

∂ 2 p
∂ t2 = c2

f

(
∂ 2 p̄
∂x2 +

∂ 2 p̄
∂ r2 +

1
r

∂ p̄
∂ r

)
, (7a)

ρ
∂ 2Ux

∂ t2 +
∂ p̄
∂x

= 0, (7b)

ρ
∂ 2Ur

∂ t2 +
∂ p̄
∂ r

= 0, (7c)

where x and r are cylindrical coordinates, c f is the
velocity, and Ux and Ur are longitudinal and transverse
displacements, respectively.

3.3. Mechanical waves in the surrounding
biomembrane

Biomembranes are able to resist pressure, tension,
stretch, and bending [48]. The deformation can be
induced by a mechanical or an electrical impact [49–
51]. The theoretical model of Griesbauer et al. [50] for
pulses in lipid monolayers at the air–water interface is a
second-order wave equation that is viscously coupled (by
the first derivative) to the liquid (water) underneath. The
existence of 2D sound waves along a lipid monolayer
was demonstrated experimentally by Shrivastava and
Schneider [51]. They showed that the localized self-
supporting pulses have a threshold amplitude and all-
or-none nature. The need to take nonlinearity in
compressibility together with dispersive effects into
account is stressed [51].

Such a nonlinear model with dispersion is proposed
by Heimburg and Jackson [14], Andersen et al. [52], etc.
The governing equation for a 1D pulse in a cylindrical
biomembrane is proposed by using the energy density
e [14]

eρ0 = c2
0u2 +

1
3

pu3 +
1
6

qu4, (8)

which results in the following equation of motion:

∂ 2u
∂ t2 =

∂
∂x

[(
c2

0 + pu+qu2) ∂u
∂x

]
−h1

∂ 4u
∂x4 , (9)

where the last term is added in order to model dispersive
effects [14]. Here u is the density change (u = ∆ρ0), c0
is the initial sound velocity, and p, q, h1 are constants.

This is a Boussinesq-type equation where nonlinearity is
caused by the compressibility, which has an impact on
the velocity:

c2 = c2
0 + pu+qu2. (10)

In other words, the influence of the stiffness of the
biomembrane caused by the repulsion potentials between
the heads and tails of lipid molecules [53] is taken into
account.

Due to the existence of nonlinearities and dispersion
in Eq. (9), its solution may have a solitary character [14].
In order to improve dispersive properties of such a model,
the use of more realistic dispersion terms like it is done
for modelling waves in microstructured solids has been
proposed [54]:

∂ 2u
∂ t2 =

∂
∂x

[(
c2

0 + pu+qu2) ∂u
∂x

]
−h1

∂ 4u
∂x4 +h2

∂ 4u
∂x2∂ t2 ,

(11)
where h1, h2 are dispersive constants.

The second dispersive term with the coefficient h2
reflects the inertial properties of the lipid structure and
it influences the width of the solitary pulse. In the
improved model h1 determines the limiting velocity at
high frequencies and h2 governs how fast this limit is
reached.

In order to compare these theoretical results with
experiments [55], one has to understand that Eqs (9) and
(11) describe longitudinal waves and that the transverse
displacements w measured by Tasaki [55] can be found
from the derivative of the longitudinal profile [44,54,56]:

w =−kr
∂u
∂x

, (12)

where r is the radius of the axon and k is a constant. In
the theory of rods k is the Poisson ratio.

The nonlinear wave equations (9) and (11) describe
longitudinal density waves in biomembranes and are able
to model localized pulses due to the balance of nonlinear
and dispersive effects. Several authors propose to call
such models ‘soliton models’ for signals in nerve fibres
[14, 38, 52, 57]. As shown by Engelbrecht et al. [58], in
the strict mathematical sense [17] these solitary pulses
are not solitons because their interaction is not fully
elastic. However, like in other Boussinesq-type models,
it is customary to use the notion of solitons despite this
discrepancy [59]. A full description of solutions of Eq.
(11) over a large set of its parameters including the
formation of solitary trains from an arbitrary initial input
and the analysis of interactions is given in [58].

4. A COUPLED MODEL

The ideas of the coupling of physical effects in signal
propagation in nerve fibres were already emphasized a
long time ago [39,60] and more recently by Bennett
[61] and Andersen et al. [52]. It is known, for
example, that the ion channels may be voltage-
gated and also mechanically sensitive [48] and that
an action potential generates an axoplasmic pressure
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wave in the intersticial fluid [43,44]. Both can in
principle activate the ion channels in the surrounding
biomembrane. Experiments by Terakawa [41] and
Tasaki [55] demonstrated coupling effects. In general,
one can say that the signal transmittance in neural
systems is a complex physiological process [62,63].
It all calls for framing ‘a theory that incorporates all
observed phenomena in one coherent and predictive
theory of nerve signal propagation’ [52]. In terms of
complexity, the goal is to formulate a model that will
be able to describe an ensemble of waves of different
physical origin (electrical and mechanical) in which the
nonlinearities play a decisive role.

The simplest idea is to base the ‘coherent theory’
on existing mathematical models (action potential,
the pressure wave in the axoplasmic fluid, and the
mechanical wave in the surrounding biomembrane, see
above) but introducing the coupling forces like it is
done in continuum mechanics [64]. The following
assumptions are made:

(i) electrical signals are the carriers of information
[62] and trigger all the other processes;

(ii) the axoplasm in a fibre can be modelled as a
fluid where a pressure wave is generated due
to an electrical signal; here, for example, the
actin filaments in the axoplasm may influence
the opening of channels in the surrounding
biomembrane but do not influence the generation
of a pressure wave in the fluid [40, 42, 44];

(iii) the biomembrane is able to deform (stretch, bend)
under a mechanical impact [50, 51];

(iv) the channels in biomembranes can be opened and
closed under the influence of electrical signals as
well as of the mechanical input; this means that
the tension of a membrane leads to an increase of
the transmembranal ion flow and the intracellular
actin filaments may influence the motions at the
membrane [48, 65];

(v) there is strong experimental evidence on electrical
or chemical transmittance of signals from one
neurone to another [61,66] although the role of
mechanical transmission is also discussed [67].

The proposed simplified set of the coupled model is
the following:

The initial condition at t = 0 is

z = f (x), (13)

where z is an electrical pulse. The action potential is
governed by the FHN-type model (4) in the form of two
coupled equations:

∂ z
∂ t

= z(z− (a1 +b1))(1− z)− j+D1
∂ 2z
∂x2 ,

∂ j
∂ t

= ε(− j+(a2 +b2)z),
(14)

where a = (a1 + b1) and b = (a2 + b2). Here a1,
a2 control ‘electrical’ activation and b1, b2 control

‘mechanical’ activation. Indeed, as shown by Morris
[68], the ion channels may be mechanosensitive.
Compared with the original FHN model (4), the
modification is introduced by differentiating electrical
and mechanical activation. The pressure wave in the
axoplasm is governed by a 1D Navier–Stokes model:

ρ
(

∂vx

∂ t
+ vx

∂vx

∂x

)
+

∂ p̄
∂x

−µν
∂ 2vx

∂x2 = F1(z), (15)

where v is the velocity, ρ is the density, µν is the
viscosity, and F1(z) is a force from the action potential.
In the biomembrane, the longitudinal wave is governed
by

∂ 2u
∂ t2 =

∂
∂x

[(
c2

0 + pu+qu2) ∂u
∂x

]
−h1

∂ 4u
∂x4

+h2
∂ 4u

∂x2∂ t2 +F2(z,v), (16)

where the notations follow Eqs (9) and (11), and F2(z,v)
is a force from the processes in the axoplasm. In
the biomembrane the transverse wave is governed by
Eq. (12):

w =−kr
∂u
∂x

, (17)

where r is the axon radius and k is the coefficient which
in the theory of rods is the Poisson ratio but in the present
case, due to the complicated structure of a biomembrane,
needs to be determined from experiments. The flowchart
of such a model is depicted in Fig. 1.

Clearly, the process depends on the microstructure
of a nerve fibre: first, there are two structural elements –
the axoplasmic fluid and the surrounding biomembrane;
second, the biomembrane has a distinct microstructure
consisting of lipids. In order to describe the dynamics
in such a complicated structure, the physical background
has to be well understood. Physics of single elements
is described from the viewpoint of the propagation of
the action potential starting from studies of Hodgkin and
Huxley [12] up to the contemporary understanding on
axon physiology [62] with a lot of details. The physics
of biomembranes is intensively studied not only because
they are the elements of nerve fibres but because they are

Fig. 1. Flowchart of coupled models: AP – action potential,
PW – pressure wave in the axoplasm, LW – longitudinal wave in
the biomembrane, TW – transverse wave in the biomembrane.
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the building blocks of cells [48,69,70]. Due to the special
structure of biomembranes made of phospholipids, it
is important to understand their properties from the
viewpoint of the mechanics [40, 57, 71] as well as from
the viewpoint of the opening of the ion channels [48, 72,
73]. The next problem is the modelling of waves, which
up to now has been focused mostly on single waves.
The propagation of action potentials is widely studied
[11–13,62]. The waves in biomembranes are described
using the soliton model of Heimburg and Jackson [14]
and their coworkers [38,74, etc.]. The full analysis of
the governing equation (11) has revealed several types
of solutions [58]. The possible pressure wave in the
interstitial fluid is modelled theoretically [43,44] and
measured by Terakawa [41].

The proposed simplified model (13)–(17) is an
attempt to unite the possible components into a coupled
set of equations of motion, resulting in the emergence
of an ensemble of waves, which is a signature of
complexity. Such ensembles of waves are known,
for example, for the KdV solitons [75] and for the
Schrödinger solitons [76]; the interaction of fields may
also result in ensembles of waves like in thermoelasticity
[77]. Note that the governing equations (13)–(15) are
nonlinear and the coupling forces model the interaction.
The possible ensemble of waves is schematically
presented in Fig. 2.

The model satisfies directly assumptions (i)–(iv).
The last assumption (v) stresses that the electrical signal
has the main role in transmittance, and mechanical waves
accompany the main signal.

From the viewpoint of modelling complex biological
systems [24], it is obvious that the effects such
as the energy exchange and spatio-temporal coupling
between the single waves are taken into account, the
ionic transport (the influence of the microstructure) is
crucial to keep the action potential propagating, and
nonlinearities play a decisive role. A threshold for
triggering the process exists predicted by the HH [12]
or by the FHN [35] models.

Fig. 2. Schemes of the ensemble of waves. For notations see
Fig. 1. The scales are arbitrary.

5. DISCUSSION

The proposed model (13)–(17) is a robust one and based
on the causality of the general process generated by an
electrical input (13) following the present understanding
of axon physiology [62]. Quite certainly the model
could be improved by using a more sophisticated HH-
type model for the action potential and results of further
studies, especially after the nature of coupling forces
is better understood. The main question is related to
the character of the coupling of an electrical signal
with the deformation of the surrounding biomembrane,
i.e. to the electro-mechanical coupling [48]. As the
opening and closing of the ion channels are decisive for
signal propagation, this question is closely related to the
voltage sensitivity and/or mechanosensitivity of channel
formation. Although the opening of ion channels may be
caused besides the electrical signals also by mechanical
signals [48], it might be possible to ignore this influence
at the first step of model calibration (i.e. by taking
b1 = b2 = 0). The force exerted on the biomembrane
by an electrical signal could be related to the ion current
through the pressure wave in the axoplasm. It is argued
that this force is related to electrostriction [41,78] and
can be taken as a function of the square of the voltage
[44, 48, 79].

The propagation of the action potential is possible
only because of the outflux and/or the influx of ions from
the interstitial fluid. This influence is modelled either
by adjusting nonlinear parameters ai, bi in Eq. (14) or
by an additional external force F3(u,v) that acts on the
initial system. Such a possibility was already shown
by FitzHugh [13], who demonstrated the influence of
the ‘stimulus intensity’ on the solution. In the case
of the present model Eq. (14) this assumption means
that ai + bi = const and an additional force appears on
the right-hand side of Eq. (14). The present model
describes the coupling of various components in an
ensemble at the given moment, but the coupling could
also be time-dependent taking into account the history
of the process. There are several ways to model this
complex process. El Hady and Machta [44] elaborated a
mechanism of the coupling of electrical and mechanical
signals based on the assumption that the potential energy
of the process is stored in the surrounding biomembrane
and kinetic energy in the axoplasmic fluid resulting in
mechanical surface waves. The HH model is used for
describing the action potential, and the force exerted on
the biomembrane is taken proportional to the square of
the voltage. The axoplasmic fluid is described by the
linearized Navier–Stokes equation.

Another coupled model of electrical and mechanical
signals based on the spring-dampers (dashpots) system is
proposed by Jérusalem et al. [80]. The ion currents are
again calculated using the HH model and calibrated for a
guinea pig’s spinal cord white matter. It is stressed that
the strain and the strain rate have a decisive role linking
electrophysiology and structural damage.
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There are but a few experiments on simultaneous
measurements of electrical and mechanical signals in
nerve fibres. Terakawa [41] measured the propagation of
the intracellular pressure in the axoplasm accompanying
the action potential in squid giant axons. He showed that
the pressure is correlated with the membrane potential
but ‘the pressure response was slower’. Experiments by
Gonzales-Perez et al. [81] also demonstrated measured
electrical and mechanical signals. These signals,
however, were shown not in real time but were only
temporarily aligned. This indicates also the possibility
of a delay in the deformation of the biomembrane
due to the opening of ion channels. One should note
also the measurements of coupled electrical signals
and mechanical pulses in excitable plant cells (Chara
braunii), which have shown synchronization of velocities
of both pulses [82].

Our model, as presented in Section 4, is a
system of differential equations, which actually means
the assumption of continuous media for all structural
constituents. There is a bulk of experimental values
characterizing ion currents and membrane properties [37,
73,80, etc.] that can be used for evaluating the parameters
of the model. As described above, two important
problems are (i) quantification of the mechanisms of
opening the ion channels and (ii) determination of the
coupling forces.

As a first approximation the coupling forces should
be related to the movement of ions through the
membrane during the propagation of the nerve pulse.
At the beginning, when the action potential forms,
sodium ions move into the axon through the membrane
increasing the pressure in the axoplasm locally, which
can cause displacement of the lipid bilayer and result
in the longitudinal density change. Similarly, when
the potassium ions start moving out from the axon, the
pressure in the axoplasm will change. The equilibrium
is restored by the ion pumps, and another nerve pulse
can be propagated. One can speculate that the density
changes in the lipid bilayer could interfere with the
activity of ion channels and their opening/closing time
constants. This is just one possibility of constructing
these coupling forces. The reality could be much more
complex. For example, the local osmolarity might
have a significant effect on the process and should be
considered.

The calculations of single motions under an
initial input, i.e. solving Eqs (14)–(16) in their
dimensionless form without coupling, demonstrate
expected characteristics. The solution of the FHN
equation (14) for the action potential AP demonstrates
all the basic characteristics: the existence of a threshold,
the formation of a stable asymmetric profile, and the
existence of the refraction length [35]. The solution
pressure wave of the 1D Navier–Stokes equation (15)
is well known and can be compared with the flow
in blood vessels [83,84, etc.]. The initial pulse-like
excitation travels with changes due to viscosity and wall
deformation if this is taken into account (not in our case).

The longitudinal mechanical wave in the biomembrane
described by Eq. (16) can be found in the form of a
solitary wave [14,58]. Note that the FHN and Heimburg–
Jackson equations are actually two-wave equations [16]
and from an initial input two waves are generated –
one to the right and the other to the left. In terms of
physiology this means that ortho- and antidromic waves
can be generated from a localized excitation [79].

The question of synchronization of the velocities in
a coupled model (cf. Fillafer et al. [82]) is of utmost
importance. The velocity of action potential has been
experimentally determined in many studies [39, 85, 86],
and it depends significantly on the character of nerve
fibres (diameter, myelin sheath, etc.). Early experiments
established the velocity in squid axons in the range of
20 ms−1 but later the range was determined from 3 ms−1

to 100 ms−1. The velocity of a mechanical pulse in a
biomembrane is determined in the range of 170 ms−1

[14]. In plant cells both velocities are significantly lower
but synchronized in the range of ca 10 ms−1 [82].

A numerical experiment by using the pseudospectral
method [54,58] was carried out for solving Eqs (14)
and (16), leaving aside the pressure wave and taking the
coupling force as F2(z). Its functional shape is related to
the changes of the ion current, which is coupled to the
changes of voltage on the biomembrane. In the simple
FHN model only one ion current is taken into account
without specifying its character [35]. Note that in the
HH model the sodium and potassium ions are specified
with their complicated kinetics [39]. Here we assume
that the mechanical wave is generated by F2(z) related
to the gradient of the ion current. As far as the action
potential (and the supporting ion current) is pulse-like
in the moving frame, the corresponding bipolar gradient
is energetically balanced. This is an essential property
and means also satisfying the conservation laws. In
numerical calculations the dimensionless variables Z and
J in Eq. (14) and U in Eq. (16) are used, while n is the
discrete dimensionless space (X = ni∆X).The time and
space scales match real values in large axons but as said
above, the synchronous action of velocities needs further
studies.

The generated ion current calculated from the FHN
model (14) and its gradient are shown in Fig. 3. This
bipolar gradient is used for the determining of the
dimensionless coupling force F2(Z) = γ1JX , where γ1 is
a constant. If the coupling force is of a localized pulse
type, the energetical balance will be distorted. At this
stage we do not specify more the physical process of
coupling but our assumption follows the discussion by
Barz and Barz [67], El Hady and Machta [44], Gonzales-
Perez et al. [81], and others. Note that using the gradient
of the ion current for determining the driving force opens
the door for possible modifications. Namely, the various
ion currents like in the HH models can be differently
influenced by various anaesthetic drugs [33].
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Fig. 3. Normalized generated ion current J and its gradient
JX calculated from the FHN Eq. (14). Here n is the discrete
dimensionless space (X = ni∆X).

The initial condition (13) is taken as a narrow
sech2-type pulse with an amplitude above the threshold,
which leads to a stable action potential. Figure 4
demonstrates a snapshot of the coupled process. The
parameters in Eqs (14) and (16) are chosen such that
lead the action potential and the mechanical wave in the
biomembrane to propagate in the phase as an ensemble
[44]. This corresponds to the situation in the experiments
by Terakawa [41]. Note that this case corresponds to
the anomalous dispersion of the mechanical wave, which
explains the small vibration ahead of the main pulse [21].
The profile of the transverse wave can be determined
from the calculated profile of the mechanical wave. Its
functional bipolar shape is similar to the experimental
results [41,55]. All amplitudes are normalized and
profiles in Fig. 4 reflect the functional shape of the
waves (AP, LW) and the accompanying ion current J
in the ensemble. It is possible that if the velocity of
the mechanical wave exceeds the velocity of the action
potential, the mechanical wave in the biomembrane will
affect the ion channels [48]. On the other hand, if the
velocity of an action potential exceeds the velocity of the
mechanical wave, the mechanical wave may influence
the recovery process [41].

Numerical results demonstrate the possibility of
building a coupled model for the complex process of
signal propagation in nerve fibres. Even the robust model
composed by Eqs (14) and (16) shows the propagation of
an ensemble. Further studies are in progress in order to
match the theoretical model with experimental data and
to specify the character of the forcing terms together with
the role of a pressure wave in the axoplasm. The possible
synchronization of velocities of waves in the ensemble
needs also further analysis. The earlier experiments
[41,55] showed that the waves in the ensemble propagate
in phase. However, the later estimations of velocities of
single waves in nerve fibres differ considerably (cf. for
example Hodgkin and Huxley [12] and Heimburg and
Jackson [14]). The recent measurements of velocities
in plant cells demonstrate clearly synchronization [82].
These contradicting results warrant further studies.
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Fig. 4. Dimensionless solutions of coupled Eqs (14) (FHN) and
(16) (improved HJ) at T = 630. The profiles propagating to the
left are shown. Here D1 = 1, ε = 0.01, a1 = a2 = 0.2, P = 0.05,
Q =−0.02, H1 = 18, H2 = 10.27, b1 =−γ2 · Jx, b2 =−γ3 · Jx,
γ1 = 0.015, γ2 = γ3 = 0.05. Here n is the discrete dimensionless
space (X = ni∆X).

Experimental verification of the model should
follow studies of Terakawa [41], who measured all the
components of a signal simultaneously. The regulation
of the width of the longitudinal mechanical wave in a
biomembrane permits the estimation of the coefficient h2
as a measure of inertial properties of a lipid structure.

In conclusion, the signals in nerve fibres are
composed of an ensemble of waves that are interacting
with each other. The joint ‘electromechanical’ signal [14,
52] exhibits clear signatures of complexity in dynamical
processes [5]: nonlinearity and interaction between the
components resulting in a unique biological unit [87].
Moreover, as a result of propagation, temporary changes
occur in the structure of the biomembrane [14]. In
addition, the process will be generated only if an initial
input outvalues a critical threshold.

Many recent studies have tried to combine the
physiological effects characteristic of signal propagation
in nerve fibres into a more general model based on
the explanation of possible interactive effects. In
this paper, an attempt is made to build up a robust
mathematical model based on coupled equations of
motion as demonstrated in the analysis of many other
physical problems [5]. To the best knowledge of the
authors, this is the first attempt to describe the whole
process in terms of differential equations. We certainly
are aware that there are effects not considered in the
proposed model such as heat production, the influence
of the anaesthetic drugs, the role of proteins, etc.
While mathematically clear and consistent (causality and
reciprocity involved), the model can serve as a backbone
inviting for further clarification and modification from
the viewpoint of physiology. Characteristically of
complex systems, the ensemble of waves resulting from
the proposed model is more than single waves.
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the theory of waves. Pflügers Arch., 1912, 144, 35–38.

61. Bennett, M. V. L. Electrical synapses, a personal pers-
pective (or history). Brain Res. Rev., 2000, 32, 16–28.

62. Debanne, D., Campanac, E., Bialowas, A., Carlier, E., and
Alcaraz, G. Axon physiology. Physiol. Rev., 2011, 91,
555–602.

63. Contreras, F., Cervantes, H., Aguero, M., and Najera, M.
Classic and non-classic soliton like structures for
traveling nerve pulses. Int. J. Mod. Nonlinear Theory
Appl., 2013, 2, 7–13.

64. Brown, F. L. H. Elastic modeling of biomembranes and
lipid bilayers. Annu. Rev. Phys. Chem., 2008, 59, 685–
712.

65. Barz, H., Schreiber, A., and Barz, U. Impulses and
pressure waves cause excitement and conduction in
the nervous system. Med. Hypotheses, 2013, 81, 768–
772.

66. Hormuzdi, S. G., Filippov, M. A., Mitropoulou, G.,
Monyer, H., and Bruzzone, R. Electrical synapses:
a dynamic signaling system that shapes the activity
of neuronal networks. BBA Biomembr., 2004, 1662,
113–137.

67. Barz, H. and Barz, U. Pressure waves in neurons and their
relationship to tangled neurons and plaques. Med.
Hypotheses, 2014, 82, 563–566.

68. Morris, C. E. Why are so many ion channels mechano-
sensitive? In Cell Physiology Source Book (Fourth



38 Proceedings of the Estonian Academy of Sciences, 2018, 67, 1, 28–38

Edition) (Sperelakis, N., ed.). Elsevier, 2012, 493–
505.

69. Physics of cellular materials: biomembranes [lecture
notes]. http://faculty.biomath.ucla.edu/tchou/pdffiles/
lecture3.pdf, 2002 (accessed 2017-06-03).

70. Lomholt, M. A. and Miao, L. Descriptions of membrane
mechanics from microscopic and effective two-
dimensional perspectives. J. Phys. A. Math. Gen.,
2006, 39, 10323–10354.

71. Deseri, L. and Zurlo, G. The stretching elasticity of
biomembranes determines their line tension and
bending rigidity. Biomech. Model. Mechanobiol.,
2013, 12, 1233–1242.

72. Tieleman, D. P., Leontiadou, H., Mark, A. E., and
Marrink, S. J. Simulation of pore formation in lipid
bilayers by mechanical stress and electric fields. J.
Am. Chem. Soc., 2003, 125, 6382–6383.

73. Heimburg, T. Lipid ion channels. Biophys. Chem., 2010,
150, 2–22.

74. Mosgaard, L. D., Zecchi, K. A., and Heimburg, T.
Mechano-capacitive properties of polarized mem-
branes. Soft Matter, 2015, 11, 7899–7910.

75. Engelbrecht, J. and Salupere, A. On the problem of
periodicity and hidden solitons for the KdV model.
Chaos, 2005, 15, 015114.

76. Barashenkov, I. V. and Zemlyanaya, E. V. Soliton
complexity in the damped-driven nonlinear
Schrödinger equation: stationary to periodic to
quasiperiodic complexes. Phys. Rev. E Stat. Nonlin.
Soft Matter Phys., 2011, 83, 1–8.

77. Berezovski, A., Engelbrecht, J., and Ván, P. Weakly
nonlocal thermoelasticity for microstructured solids:
microdeformation and microtemperature. Arch. Appl.
Mech., 2014, 84, 1249–1261.

78. Petrov, A. G. and Sachs, F. Flexoelectricity and elasticity
of asymmetric biomembranes. Phys. Rev. E Stat.
Nonlin. Soft Matter Phys., 2002, 65, 1–5.

79. Blicher, A. and Heimburg, T. Voltage-gated lipid ion
channels. PLoS One, 2013, 8, e65707.

80. Jérusalem, A., Garcı́a-Grajales, J. A., Merchán-Pérez, A.,
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Signaal närvikius kui komplekssüsteem

Jüri Engelbrecht, Tanel Peets, Kert Tamm, Martin Laasmaa ja Marko Vendelin

Paljud bioloogilised protsessid on käsitletavad komplekssüsteemidena, sest nende üksikud omavahel interakteeruvad
komponendid moodustavad terviku. Selline on ka signaali kui erutuslaine levi närvikius (aksonis), kus elektriline
signaal ehk aktsioonipotentsiaal on seostatud mehaanikaliste protsessidega aksoplasmas ja seda ümbritsevas
biomembraanis. See biomembraan on keerulise mikrostruktuuriga, mis on moodustatud nii piki- kui ka põikisuunas
deformeeruvatest lipiididest. Sellise struktuuri mehaanikalised omadused on tuvastatud mitmetes eksperimentides.
Aksonis toimuvate füsioloogiliste protsesside analüüsi põhjal on esitatud matemaatiline mudel, mis seostab
elektrilise signaali teiste protsessidega närvikius. Mudel kujutab endast mittelineaarsete diferentsiaalvõrrandite
süsteemi. Protsessi seostatus on kirjeldatud interaktsioonijõudude abil. Numbriline simulatsioon näitab, et selline
mudel on võimeline kirjeldama lainete ansamblit, mis vastab füsioloogilistele tingimustele ja on iseloomulik
komplekssüsteemidele.


